
From Live Multi-Camera 3D
Modeling to In Situ Processing for
HPC

 bruno.raffin@inria.fr
November 2016

Bruno Raffin
DataMove

Data	flow	programming	for	data	intensive	high	performance	
applica6ons	

	
Tool:	FlowVR		
	
Evolved	from	applica6ons	to	interac6ve	applica6ons	(virtual	

reality,	3D	modeling)	to	computa6onal	steering	and	in	situ		
processing	for	large	scale	numerical	simula6ons		

What this talk is about

- 2

Base	object:	components	
	 	 	 	 	 	 	 		

	
	
		

	
	

While (wait(inputs))
 get()
 compute()
 put()

end

Get/put messages from/to ports: no explicit origin/destination

A simple API to limit code intrusion
Direct access to memory: no hidden copies
Adapted to develop domain specific layers

Input ports

Output ports

message

message

FlowVR: : Data Flow Programming

- 3

http://flowvr.sf.net

Python	scrip6ng:	
1.  Assemble	components	(data	flow	graph)	
2.  Instan6ate	parameters:	component	mapping,…	

	
	
		

	
		

Launching commands:
mpirun app1….
mpirun app2….

Configuration commands for daemons
(message routing,….)

Script execution

 : Data Flow Assembly

- 4

 : Example

- 5

Parallel
Simulation

N-to-1 Com

Visu

bruno.raffin@inria.fr 6

N-to-1 Communication Pattern
(tree with arity k - unkown)

(N unknown – get value from incoming component)

Merge filter
(K inputs –unkown)

 : Example

bruno.raffin@inria.fr 7

Parallel
Simulation

N-to-1 Com

Visu

N=4

K=2

 : Example

bruno.raffin@inria.fr 8

N-to-1 Communication Pattern
(N=4)

Merge 2 inputs Merge 2 inputs

Merge 2 inputs

 : Example

bruno.raffin@inria.fr 9

Parallel
Simulation

N-to-1 Com

Visu

N=4

K=2

 : Example

Run	one		daemon	per	node	
	
-  Components	(applica6ons)	aOach	to	the	daemon	when	
star6ng		

-  Daemons	in	charge	of	rou6ng		messages	and	triggering	
component	execu6ons:	
•  Pointer	exchange	inside	a	node	(shared	memory)	
•  MPI	or	TCP	between	nodes		

	
		

	
		

FlowVR Runtime

- 10

- 11

Interactive Applications

- 12

Interactive Applications

- 13

Equipex Kinovis: 70 cameras

•  Data Flow Programming well adapted to this type of
interactive data intensive applications

•  Avoid moving data, process them as closely as possible
to their source

•  No intermediate storage to disk, process data as soon as
available (some buffering possible)

Actually an approach that is today relevant for more traditional

large scale numerical simulations !

Itermediate Summary

- 14

More compute capabilities -> larger simulations -> more data

Usability Challenge:

•  How to extract meaningful information from this huge amount of data in a reasonable time
•  Analysis tools have not been considered as first class citizen so far. They did not receive

the same attention as simulation codes. Today analysis codes are either:
-  In the simulation codes
-  Scripts (with limited parallelism)
-  Rely on on scientific visualization tools like Paraview/VTK or Visit (reasonable

parallelism support)

Performance Challenge:
•  Moving data becomes the bottleneck for simulation as well as data analytics
•  Compute capabilities increase faster than data transfer ones
•  Data movements and storage consume 50%-70% of total energy (ScidacReview 1001)

The Data Challenge

- 15

Scientists already spend a significant part of their efforts in the data
analysis

A simple but classical strategy to limit the impact of the data challenge:

Reduce output frequency

Need for more advanced strategies to better manage the available I/O
and storage budget

In Situ Processing!!

A Data Challenge Already Present

- 16

Execution
(num. simulation)

Disks

Analytics

Visualization

Data

 Data

Big Machine

Limited support for parallelization

Job Scheduler

Job submission

Not sustainable at Exascale !

Traditional Workflow

Small Machine
(laptop)

Simulation codes may include
some analysis

- 17

Execution:
num. simulation
interleaved with

analytics

Disks

Analytics

Visualization

Data

Data

Big Machine

Job Scheduler

Job submission

Reduced
Data
Movements

In situ analytics:
 Pros:

•  Data reduction
•  Large scale parallel analytics
•  On-line monitoring

 Cons:
•  Need to anticipate analytics
•  Programming model ?

WorkFlow with In situ Analytics

- 18

Unanticipated analysis still need to be performed
postmortem

In Situ Processing: What for ?
Data compression (Isabela [Lehmann & al. LDAV’14])
Indexing (FastBit, Dirac [Lakshminarasimhan & al. HPDC’13])
Analytics (1D, 2D, 3D descriptors)

[Dreher & al.
Faraday Discussion’14]

- 19

In Simulation Processing
Time

Simulation iteration(s) I/O

Simulation iteration(s) Analytics I/O

Simulation iteration(s)

Simulation iteration(s)

No analytics

In-simulation
analytics

Simulation slowdown mainly
 due to cache thrashing

- 20

In Transit Processing
Time

Simulation iteration(s)

Analytics I/O

Data
Copy Simulation iteration(s)

In-transit

In-transit: simulation and
analytics run on different
nodes (staging nodes)

Sim
node

communication

Staging
node

communication

- 21

In Situ Processing
Time

Simulation iteration(s)

Analytics I/O

Data
Copy Simulation iteration(s)

Simulation iteration(s) I/O Simulation iteration(s)

Simulation slowdown
 due to concurrent use of some
 resources with analytics and I/Os

No analytics

Resource allocation strategies:
 time sharing or space sharing
(dedicated helper core)

In situ:
simulation and analytics share
the same nodes

Helper core Node

In-situ

- 22

Post-proc.

MPI MPI

In-Transit Post-proc.

Sim

Sim

Merge Post-proc.
Helper core

Node Sim

Sim

Merge Post-proc.
Helper core

Node Sim

Sim

Merge Post-proc.
Helper core

Node

Staging nodes

Asynchronous In Situ + In Transit Processing

Storage or
live visualisation

Approach adopted by:
FlexIO (IPDPS’13), Damaris
(Cluster’12), FlowVR
(CCGrid’14)

Molecular Dynamics

Collaboration with Marc Baaden (IBPC):
•  Realistic molecular systems
•  Realistic analytics scenarios

Gromacs:
•  Standard open source molecular dynamics simulation code
•  Hybrid MPI+openMP+GPU parallelism, with integrated dynamic load

balancing strategies
•  Heterogeneous: long range interactions handled through dedicated

processes (PME nodes)
•  Very high iteration frequency (500 Hz)
•  Often a benchmark in exascale related publications

Aggregate the results in situ on helper-core (1 per node) to the master node

Exemple: Benefit of the In Situ Helper Core
Strategy

Exemple: Benefit of the In Situ Helper Core
Strategy

Aggregate local results in situ on helper-core (1 per node) and write to disk

proved well adapted to develop these strategies

I/O in-situ on
helper core

Gromacs native
I/O (in simulation)

In Sim vs. In Situ I/O [Dreher,CCGRID’14]

Gromacs without I/O: 15 cores/node 3% slower than 16 cores/node
 (- 6% if scalability would have been perfect)

2048 cores (froggy@CIMENT)

Gromacs no I/O

- 27

Parallel In Situ Quicksurf

Classical way to visualize a molecule surface (isosurface based on
atom density)

Parallel In Situ Isosurface Extraction [Dreher,CCGRID’14]

Compute a molecule surface
based on atom density

Tested different distributions of processing
steps to in situ and in transit nodes.

- 29

Densities Redistributed In Situ

Densities Redistributed In Transit

Atom Positions Redistributed In Transit

Generate 3x
more traffic than
density
redistribution, but
enable other
analytics on atom
positions on
staging nodes

Performance [Dreher,CCGRID’14]
•  In transit: 1 staging

node every 64
compute nodes

•  Density-intransit:
costs 7% comp. to
gromacs 15 cores

•  Density-insitu costs

8% but use 1.5%
less nodes than
density-intransit

•  Atoms-intransit costs
8.6% but enables
other in transit
analytics (3x more
data to move on
stagging nodes than
Density-intransit)

Gromacs
no I/O

Gromacs +
 Isosurface

 (froggy@CIMENT)

- 33

From In Situ Analytics to Computational Steering

- 34

DataFlow	Programming:	
	-	FlowVR			
	-	Google	TensorfFlow	(Machine	learning)	
	-	Apache	Flink	(Big	Data	stream	+	batch	processing)		

	
In-situ	analy4cs:		

	-	A	paradigm	shiU	that	will	very	likely	influence	the	HPC	
				ecosystem	(SW	and	HW)	
	-	Not	standard	framework	yet	
	-	An	opportunity	to		rethink		the	use	of	the	I/O	budget	
	-	Bring	some	interac6vity	into	the	HPC		world.	Put	the	
			“user	in	the	loop”	

	 	HPC	and	Big	Data	Convergence		?	

Conclusion

- 35

•  Dedicated	pla_orms	combining	compute	(Cluster	+	GPUs),	
data	acquisi6on	(Cameras)	and		visualiza6on		(display	wall,	
VR	headset)	resources		

• 	Grimage	(2002-2013)	
• 	Equipex	Kinovis	(since	 2014)	
• 	Led	to	experiment	sharing		compute	resources		for	batch	and	
interac6ve	compu6ng	through	Grid’5000.		
	

•  Grid’5000	mul6-site	experiments	(Bordeaux,Grenoble,	
Orléans)	

•  Grid’5000	transcon6nental	experiments	(Japan,	France)	

•  Mésocentre	Ciment		
•  EDF	&	GENCI	machines	

Infratructures

- 36

A	Flexible	Framework	for	Asynchronous	In	Situ	and	In	Transit	Analy6cs	for	Scien6fic	
Simula6ons.	MaOhieu	Dreher,	Bruno	Raffin.	CCGrid’14,	May	2014,	Chicago	

	
In	Situ	Sta6s6cal	Analysis	for	Parametric	Studies.	Théophile	Terraz,	Bruno	Raffin,	

Alejandro	Ribes,	Yvan	Fournier.	ISAV2016,	Nov	2016,	Salt	Lake	City	
	
Damaris:	How	to	Efficiently	Leverage	Mul6core	Parallelism	to	Achieve	Scalable,	

JiOer-free	I/O.	MaOhieu	Dorier,	Gabriel	Antoniu,	Franck	Cappello,	Marc	Snir,	and	
Leigh	Orf.	In	CLUSTER	-	IEEE	Interna6onal	Conference	on	Cluster	Compu6ng.	
IEEE,	September	2012.		

	
Synergis6c	Challenges	in	Data-Intensive	Science	and	Exascale	Compu6ng.	Technical	

report,	DOE	ASCAC	Data	SubcommiOee	Report,	2013.		

References

- 37

FIN

