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Data	flow	programming	for	data	intensive	high	performance	
applica6ons	

	
Tool:	FlowVR		
	
Evolved	from	applica6ons	to	interac6ve	applica6ons	(virtual	

reality,	3D	modeling)	to	computa6onal	steering	and	in	situ		
processing	for	large	scale	numerical	simula6ons		

What this talk is about 
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Base	object:	components	
	 	 	 	 	 	 	 		

	
	
		

	
	

While ( wait(inputs) ) 
 get() 
 compute() 
 put() 

end 

Get/put  messages from/to  ports: no explicit  origin/destination  
 
A simple API  to limit code intrusion  
Direct access to memory: no hidden copies 
Adapted to develop domain specific layers 
 
 

Input ports 

Output ports 

message 

message 

FlowVR:  : Data Flow Programming 
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http://flowvr.sf.net 



Python	scrip6ng:	
1.  Assemble	components	(data	flow	graph)	
2.  Instan6ate	parameters:	component	mapping,…	

	
	
		

	
		

Launching commands:  
mpirun app1…. 
mpirun app2…. 

Configuration commands for daemons 
(message routing,….) 

Script execution 

  : Data Flow Assembly 
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  : Example 
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Parallel 
Simulation 

N-to-1 Com 

Visu 
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N-to-1 Communication Pattern 
(tree with arity k - unkown) 

(N unknown – get value from incoming component) 

Merge filter 
(K inputs –unkown) 

 

  : Example 
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Parallel 
Simulation 

N-to-1 Com 

Visu 

N=4 

K=2 

  : Example 
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N-to-1 Communication Pattern 
(N=4) 

Merge 2 inputs  Merge 2 inputs  

Merge 2 inputs  

  : Example 
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Parallel 
Simulation 

N-to-1 Com 

Visu 

N=4 

K=2 

  : Example 



Run	one		daemon	per	node	
	
-  Components	(applica6ons)	aOach	to	the	daemon	when	
star6ng		

-  Daemons	in	charge	of	rou6ng		messages	and	triggering	
component	execu6ons:	
•  Pointer	exchange	inside	a	node	(shared	memory)	
•  MPI	or	TCP	between	nodes		

	
		

	
		

FlowVR  Runtime 
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Interactive Applications 
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Interactive Applications 
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Equipex Kinovis: 70 cameras 



•  Data Flow Programming well adapted to this type of 
interactive data intensive applications 

•  Avoid moving data, process them as closely as possible 
to their source 

•  No intermediate storage to disk, process data as soon as 
available (some buffering possible) 

 
Actually an approach that is today relevant for more traditional 

large scale numerical simulations ! 

Itermediate Summary 
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More compute capabilities -> larger simulations -> more data 
 
Usability Challenge:   

•  How to extract meaningful information from this huge amount of data in a reasonable time 
•  Analysis tools have not been considered as first class citizen so far. They did not receive 

the same attention as simulation codes. Today analysis codes are either: 
-  In the  simulation codes 
-  Scripts (with limited parallelism) 
-  Rely on on scientific visualization tools like Paraview/VTK or Visit (reasonable 

parallelism support) 

Performance Challenge:  
•  Moving data becomes the bottleneck for simulation as well as data analytics 
•  Compute capabilities increase faster than data transfer ones 
•  Data movements and storage consume 50%-70% of total energy (ScidacReview 1001) 
 

 

The Data Challenge 
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Scientists already spend a significant part of their efforts in the data 
analysis 
 
 
A simple but classical strategy to  limit the impact of the data challenge:   

Reduce output frequency 
 
 

Need for more advanced strategies to better manage the available I/O 
and storage budget 

 
 

In Situ Processing!! 

A Data Challenge Already Present 
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Execution  
(num. simulation) 

Disks 

Analytics 

Visualization 

Data 

 Data 

Big Machine 

Limited support for parallelization 

Job Scheduler 

Job submission 

Not sustainable at Exascale ! 

Traditional Workflow 

Small Machine 
(laptop) 

Simulation codes may include 
some analysis 
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Execution: 
num. simulation 
interleaved with 

analytics 

Disks 

Analytics 

Visualization 

Data 

Data 

Big Machine 

Job Scheduler 

Job submission 

Reduced 
Data 
Movements 

In situ analytics: 
  Pros: 

•  Data reduction 
•  Large scale parallel analytics 
•  On-line monitoring 

 Cons: 
•  Need to anticipate analytics 
•  Programming model ?  

WorkFlow with In situ Analytics 
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Unanticipated analysis still need to be performed 
postmortem 



In Situ Processing: What for ?  
Data compression (Isabela [Lehmann & al. LDAV’14] ) 
Indexing (FastBit, Dirac [Lakshminarasimhan & al. HPDC’13] ) 
Analytics (1D, 2D, 3D descriptors) 
 

    
 
 
 
 
 
 
 
[Dreher  & al.  
Faraday Discussion’14] 
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In Simulation Processing 
Time 

Simulation iteration(s) I/O 

Simulation iteration(s) Analytics I/O 

Simulation iteration(s) 

Simulation iteration(s) 

No analytics 

In-simulation 
analytics 

Simulation slowdown mainly 
 due to cache thrashing 
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In Transit Processing 
Time 

Simulation iteration(s) 

Analytics I/O 

Data 
Copy Simulation iteration(s) 

In-transit 

In-transit: simulation and 
analytics run on different 
nodes (staging nodes)  

Sim 
node 

communication 

Staging 
node 

communication 
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In Situ Processing 
Time 

Simulation iteration(s) 

Analytics I/O 

Data 
Copy Simulation iteration(s) 

Simulation iteration(s) I/O Simulation iteration(s) 

Simulation slowdown 
 due to concurrent use of some 
 resources with analytics and I/Os  

No analytics 

Resource allocation strategies: 
 time sharing or space sharing 
(dedicated helper core) 

In situ: 
simulation and analytics share 
the same nodes  

Helper  core  Node 

In-situ 
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Post-proc. 

MPI MPI 

In-Transit Post-proc. 

Sim 
 

Sim 
 

Merge Post-proc. 
Helper core  

Node Sim 
 

Sim 
 

Merge Post-proc. 
Helper core 

Node Sim 
 

Sim 
 

Merge Post-proc. 
Helper core 

Node 

Staging nodes 

Asynchronous In Situ + In Transit  Processing 

Storage or 
live visualisation 

 
Approach adopted by: 
FlexIO (IPDPS’13), Damaris 
(Cluster’12), FlowVR 
(CCGrid’14) 
 



Molecular Dynamics 

Collaboration with Marc Baaden (IBPC): 
•  Realistic molecular systems 
•  Realistic analytics scenarios 

 
 
Gromacs:  
•  Standard open source molecular dynamics simulation code 
•  Hybrid MPI+openMP+GPU parallelism, with integrated dynamic load 

balancing strategies 
•  Heterogeneous: long range interactions handled through dedicated 

processes (PME nodes) 
•  Very high iteration frequency (500 Hz) 
•  Often a benchmark  in exascale related publications 



Aggregate the results  in situ on helper-core (1 per node) to the master node 

Exemple: Benefit of the In Situ Helper Core 
Strategy 



Exemple: Benefit of the In Situ Helper Core 
Strategy 

Aggregate local results  in situ on helper-core (1 per node) and write to disk 

proved well adapted to develop these strategies  



I/O in-situ on 
helper core 

Gromacs native  
I/O (in simulation) 

In Sim vs. In Situ I/O  [Dreher,CCGRID’14] 

Gromacs without  I/O:   15 cores/node 3% slower than 16 cores/node 
             (- 6% if scalability would have  been  perfect) 

2048 cores (froggy@CIMENT) 

Gromacs no I/O 
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Parallel In Situ Quicksurf 

Classical way to visualize a molecule surface (isosurface based on 
atom density) 



Parallel In Situ Isosurface Extraction [Dreher,CCGRID’14] 

Compute a molecule surface 
based on atom density 

Tested different distributions of processing 
steps to in situ and in transit nodes. 
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Densities Redistributed In Situ 



Densities Redistributed In Transit 



Atom Positions Redistributed In Transit 

Generate 3x 
more traffic than 
density 
redistribution, but 
enable other 
analytics on atom 
positions on 
staging nodes 



Performance [Dreher,CCGRID’14] 
•  In transit: 1 staging 

node every 64 
compute nodes 

•  Density-intransit:  
costs 7% comp. to 
gromacs 15 cores 

 
•  Density-insitu costs 

8% but use 1.5% 
less nodes than 
density-intransit 

•  Atoms-intransit costs 
8.6% but enables 
other in transit 
analytics (3x more 
data to move on 
stagging nodes than 
Density-intransit) 

Gromacs  
no I/O 

Gromacs +  
 Isosurface 

 (froggy@CIMENT) 
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From In Situ Analytics to Computational Steering 
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DataFlow	Programming:	
	-	FlowVR			
	-	Google	TensorfFlow	(Machine	learning)	
	-	Apache	Flink	(Big	Data	stream	+	batch	processing)		

	
In-situ	analy4cs:		

	-	A	paradigm	shiU	that	will	very	likely	influence	the	HPC	
				ecosystem	(SW	and	HW)	
	-	Not	standard	framework	yet	
	-	An	opportunity	to		rethink		the	use	of	the	I/O	budget	
	-	Bring	some	interac6vity	into	the	HPC		world.	Put	the	
			“user	in	the	loop”	

	 	HPC	and	Big	Data	Convergence		?	

Conclusion 
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•  Dedicated	pla_orms	combining	compute	(Cluster	+	GPUs),	
data	acquisi6on	(Cameras)	and		visualiza6on		(display	wall,	
VR	headset)	resources		

• 	Grimage	(2002-2013)	
• 	Equipex	Kinovis	(since	 2014)	
• 	Led	to	experiment	sharing		compute	resources		for	batch	and	
interac6ve	compu6ng	through	Grid’5000.		
	

•  Grid’5000	mul6-site	experiments	(Bordeaux,Grenoble,	
Orléans)	

•  Grid’5000	transcon6nental	experiments	(Japan,	France)	

•  Mésocentre	Ciment		
•  EDF	&	GENCI	machines	

Infratructures 
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